Machine intelligence

Fuzzy logic control and Neuro-fuzzy systems

Dr. Ahmad Al-Mahasneh

PID-like FLC

PID-like FLC: A further option to obtain a better performance in respect of rise time, settling time, overshoot and steady-state error is to develop a proportional-integral-derivative (PID)-like FLC. The basic idea of a PID controller is to choose the control law by considering the error *e*, change of error Δe and integral of error Σe (or $\int_0^t edt$). The PID-type fuzzy controller is described by

$$u_{\text{PID}} = k_P \cdot e + k_d \cdot \Delta e + k_I \cdot \int_0^t e \cdot dt \tag{3.40}$$

By replacing the integral of error term $\int_0^t e dt$ with the sum of error term Σe , the PID-type fuzzy controller in discrete time is described by

$$u_{\rm PID} = k_P \cdot e + k_d \cdot \Delta e + k_I \cdot \Sigma e \tag{3.41}$$

The fuzzy control rule corresponding to the PID controller (as shown in Figure 3.31) has the form

If
$$e$$
 is A_i and Δe is B_i and Σe is C_k then u is D_l (3.42)

where $i = 1, ..., n_1, j = 1, ..., n_2, k = 1, ..., n_3$ and l = 1, ..., m. Theoretically, the number of rules to cover all possible input combinations and variations for a three-term fuzzy controller is $n_1 \times n_2 \times n_3$, where n_1, n_2 and n_3 are the number of linguistic labels of the three input variables.

Figure 3.31 PID-type FLC with error, change of error and sum of error

PID-like FLC

- Generally, a **PD-type two-term fuzzy controller cannot** eliminate steady-state error whereas a **PI-type two-term** fuzzy controller can eliminate steady-state error but it has a slower response due to the integral term in the control variable.
- In order to meet the design criteria of fast rise time, minimum overshoot, shorter settling time and zero steady-state error, a further option is to develop a PID-type FLC which enables fast rise time, smaller overshoot and settling time from the PD part and minimum steady-state error from the PI part of the PID controller.
- The generic fuzzy PID controller is a four-dimensional (threeinput single-output) fuzzy system. The basic idea of a PID controller is to choose the control law by considering the error *e*, change of error *delta e* and integral of error or sum of error.

Figure 3.32 Different PID-type FLC configurations. (a) Fuzzy PD with steady-state gain control; (b) Fuzzy PD with integral action control; (c) Fuzzy PD with fuzzified k_I

Modular Fuzzy Controller

A modular structure of FLCs with minimum number of input/output variables can reduce the number of rules.

Figure 3.35 Decomposition and modular design of fuzzy controller. (a) Classical monolithic controller; (b) Hierarchical combination of modular FLCs; (c) Parallel combination of modular FLCs

Fuzzy logic MATLAB Toolbox

https://www.mathworks.com/products/fuzzy-logic.html

Fuzzy logic MATLAB Toolbox

Introduction

- Neuro-fuzzy (NF) systems include fuzzy logic and neural networks.
- Fuzzy logic systems try to emulate human-like reasoning using linguistic expression
- Neural networks try to emulate the human brain-like learning and storing information on a purely experiential basis.
- A neuro-fuzzy system finds the parameters of a fuzzy system by means of learning methods obtained from neural networks.
- The most important reason for combining neural networks with fuzzy systems is their learning capability.
- Such a combination should be able to learn linguistic rules and/or membership functions or tune existing ones.

Introduction

Learning in NF systems means:

- Creating a rule base,
- Adjusting MFs from scratch and
- Determining other system parameters.

Table 10.1	Comparison	of neural	and fuzzy	systems
------------	------------	-----------	-----------	---------

Neural networks (NN)	Fuzzy systems (FS)	
 No mathematical model required. 	 No mathematical model required. 	
 Acquire knowledge usually from samples 	 Acquire knowledge from domain experts and 	
and knowledge is encoded into the network	knowledge is represented by rule base.	
structure.	 No learning algorithms available but simple 	
 Supervised and unsupervised learning 	implementation possible.	
algorithms available.	 Rules must be available. 	
 Rules cannot be extracted. 	 Capable of working without much a priori 	

information.

• Capable of learning from experiential data.

٠

Neuro-fuzzy systems types

• Cooperative neuro-fuzzy systems,

Figure 10.5 NN learning MFs' parameters from available data

Figure 10.4 Correcting output mechanism

Neuro-fuzzy systems types

• Concurrent neuro-fuzzy systems and

Fuzzy systems and neural networks can work in parallel for a plant without mutual cooperation among themselves.

- For example, some Japanese air conditioners use an FS to prevent a compressor from freezing in the winter and use an NN to estimate index parameters of comfort, known as predictive mean vote (PMV).
- PMV can be defined as a function of room temperature, mean radiant temperature, relative air velocity, humidity, thermal resistance of users' clothing, metabolic rate.
- Some of the PMV parameters cannot be measured using sensors, e.g., thermal resistance of clothing and metabolic rate.

Figure 10.13 FS and NN working concurrently on the same plant

 $PVM = \{room temperature, mean radiant temperature, relative air velocity, humid$ $ity, thermal resistance of users' clothing, metabolic rate \}$

Sensor data = {room temperature, time differential of room temperature, outdoor air temperature, air flow, setting temperature, direction of air flow}

Neuro-fuzzy systems types

- Hybrid neuro-fuzzy systems.
- In any fuzzy system, inferencing using the rule base and defuzzification using different methods such as centre of gravity are the most time-consuming part.
- The idea of a hybrid approach is to interpret a fuzzy system in terms of a neural network.
- The strategy adopted here with a neuro-fuzzy system is, firstly, to replace the rule base with a neural network so that the inference processing is simplified and secondly, to find the parameters of a fuzzy system by means of learning methods obtained from neural networks.
- A common way to apply a learning algorithm to a fuzzy system is to represent it in a special neural-network-like architecture so that a learning algorithm, such as backpropagation, can be used to train the system.

Figure 10.14 Hybrid Mamdani-type fuzzy-neural system

The ANFIS System

- Adaptive Network-based Fuzzy Inference System
- Neuro-fuzzy system that can identify parameters by using supervised learning methods
- Sugeno-type fuzzy system with learning capabilities
- First order model

IF x is A_1 AND y is B_2 THEN $f_1 = p_1 x + q_1 y + r_1$ IF x is A_2 AND y is B_2 THEN $f_2 = p_2 x + q_2 y + r_2$

The reasoning mechanism for this model is:

$$f = \frac{w_1 f_1 + w_2 f_2}{w_1 + w_2} = \bar{w}_1 + \bar{w}_2.$$

 Nodes have the same function for a given layer but are different from one layer to the next

ANFIS System

IF x is A_1 AND y is B_2 THEN $f_1 = p_1 x + q_1 y + r_1$ IF x is A_2 AND y is B_2 THEN $f_2 = p_2 x + q_2 y + r_2$

The reasoning mechanism for this model is:

$$f = \frac{w_1 f_1 + w_2 f_2}{w_1 + w_2} = \bar{w}_1 + \bar{w}_2$$

ANFIS System

- Learning algorithm is a hybrid supervised method based on gradient descent and Least-squares.
- Forward phase: signals travel up to layer 4 and the relevant parameters are fitted by least squares
- Backward phase: the error signals travel backward and the premise parameters are updated as in backpropagation
- Neuro-Fuzzy toolbox Matlab

ANFIS System

- Since a wide class of fuzzy controllers can be transformed into equivalent adaptive networks, ANFIS can be used for building intelligent controllers that is:
- Controllers that can reason with simple fuzzy inference and that are able to learn from experience in the ANN style